The catalytically inactive tyrosine phosphatase HD-PTP/PTPN23 is a novel regulator of SMN complex localization

نویسندگان

  • Alma Husedzinovic
  • Beate Neumann
  • Jürgen Reymann
  • Stefanie Draeger-Meurer
  • Ashwin Chari
  • Holger Erfle
  • Utz Fischer
  • Oliver J. Gruss
چکیده

The survival motor neuron (SMN) complex fulfils essential functions in the assembly of snRNPs, which are key components in the splicing of pre-mRNAs. Little is known about the regulation of SMN complex activity by posttranslational modification despite its complicated phosphorylation pattern. Several phosphatases had been implicated in the regulation of SMN, including the nuclear phosphatases PPM1G and PP1γ. Here we systematically screened all human phosphatase gene products for a regulatory role in the SMN complex. We used the accumulation of SMN in Cajal bodies of intact proliferating cells, which actively assemble snRNPs, as a readout for unperturbed SMN complex function. Knockdown of 29 protein phosphatases interfered with SMN accumulation in Cajal bodies, suggesting impaired SMN complex function, among those the catalytically inactive, non-receptor-type tyrosine phosphatase PTPN23/HD-PTP. Knockdown of PTPN23 also led to changes in the phosphorylation pattern of SMN without affecting the assembly of the SMN complex. We further show interaction between SMN and PTPN23 and document that PTPN23, like SMN, shuttles between nucleus and cytoplasm. Our data provide the first comprehensive screen for SMN complex regulators and establish a novel regulatory function of PTPN23 in maintaining a highly phosphorylated state of SMN, which is important for its proper function in snRNP assembly.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression analysis and essential role of the putative tyrosine phosphatase His-domain-containing protein tyrosine phosphatase (HD-PTP).

The putative tyrosine phosphatase HD-PTP, encoded by the protein-tyrosine-phosphatase-n23 (Ptpn23) gene, has been described as a tumor suppressor candidate gene. However, its physiological roles and detailed expression profiles are poorly defined. To investigate HD-PTP functions, we generated a mouse model in which the Ptpn23 locus was disrupted by an in-frame insertion of a beta-galactosidase-...

متن کامل

HD-PTP Is a Catalytically Inactive Tyrosine Phosphatase Due to a Conserved Divergence in Its Phosphatase Domain

BACKGROUND The HD-PTP protein has been described as a tumor suppressor candidate and based on its amino acid sequence, categorized as a classical non-transmembrane protein tyrosine phosphatase (PTP). To date, no HD-PTP phosphorylated substrate has been identified and controversial results concerning its catalytic activity have been recently reported. METHODOLOGY AND RESULTS Here we report a r...

متن کامل

Identification of PTPN23 as a novel regulator of cell invasion in mammary epithelial cells from a loss-of-function screen of the 'PTP-ome'.

We used an RNAi-mediated loss-of-function screen to study systematically the role of the protein tyrosine phosphatase (PTP) superfamily of enzymes in mammary epithelial cell motility in the absence or presence of the oncoprotein tyrosine kinase ERBB2. We report that although shRNAs directed against most of the PTP family were without effect, suppression of three PTPs-PRPN23, PTPRG, and PTPRR-en...

متن کامل

The Bro1-related protein HD-PTP/PTPN23 is required for endosomal cargo sorting and multivesicular body morphogenesis.

The Saccharomyces cerevisiae protein Bro1p is required for sorting endocytic cargo to the lumen of multivesicular bodies (MVBs). The mammalian ortholog of Bro1p is not known; although Alix, a structurally related protein, supports the topologically similar process of virus budding, functional studies have so far failed to identify a role for Alix in MVB formation. To establish whether Alix or s...

متن کامل

High-throughput screening of catalytically inactive mutants of protein tyrosine phosphatases (PTPs) in a phosphopeptide microarray.

We report herein a novel phosphopeptide microarray capable of noncovalently "trapping" catalytically inactive mutants of protein tyrosine phosphatases (PTPs), and its application in high-throughput determination of PTP substrate specificity.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 26  شماره 

صفحات  -

تاریخ انتشار 2015